

Time of Your Life

The Big Idea:

There's a lot of math involved in telling time! Let's explore time by turning ourselves into the hands of an analog clock.

You Will Need:

* To print (optional): Clock numbers (1 packet)
* Digital clock or cell phone with a digital clock display
* Masking tape
* Paper: 1 sheet per kid, plus 2 extra
\star Pencil
\star Stopwatch or cell phone with a stopwatch function

Key Prep:

* Tape the clock numbers (or just numbered pieces of masking tape) to the floor in a 10 foot circle, like a giant clock. Mark the center of the clock with a small masking tape X.
* Write "Hour Hand" on one sheet of paper, and "Minute Hand" on another.

The Math Behind the Scenes:

Clocks help us measure the passage of time, and are really helpful tools when we need to be someplace at a certain time. To read an analog clock, we need to know how to count to 60 and how to skip count by 5 s . Telling time with a clock is a great way to learn about basic fractions, too.

Time for a Birthday (for little kids)

There are 2 kinds of clocks, digital and analog. Digital clocks are the kind that you see on microwave ovens, stoves, cars and smart phones. They display the time like this:

> 09:14

* What would your birth date look like on a digital clock? That's the month and day of your birthday. This clock shows September 14, because September is the $9^{\text {th }}$ month and the 14 shows it's the $14^{\text {th }}$ day.
* Are you able to come up with a time that shows your birthday?
* Would any birthday work?
\star Your birthday time shows up on the clock twice every day. Are you usually awake both times or just one?

Now let's find out what time our names make:
\star Count the number of letters in your first name and use that number as the hour.

* Now count the letters in your last name and use that number as the minutes. For example, the name Jonathan Smith would be 08:05.
* If you have more than 12 letters in your first name, use 12 for the hour and add the extra letters to the last name for additional minutes!

BONUS:

* What time has the same digits in all 4 spaces?

What's the largest number you can make using the digits on the clock?
What's the smallest number you can make?

All Hands on Deck

(for $\mathbf{2}$ or more little and big kids)

Not all clocks look like the digital one. Some clocks have hands that spin in a circle and point to numbers to tell us the time. Those are called analog clocks. They were invented long before electricity and digital clocks.

Analog clocks look like this:
\star The short ("hour") hand takes an hour to advance from one number to the next number (for instance, from 1 to 2).

* The long ("minute") hand takes 5 minutes to advance from one number to the next number, and it takes an hour to go around the
 clock once.
太 Each number on the clock represents the hour when reading the hour hand, and 5 -minute increments when reading the minute hand (so 1 is 5 minutes, 2 is 10 minutes, 3 is 15 minutes, etc.). What time does the clock say when the hour hand is on 10 and the minute hand is on 12 ?
\star How do you read the clock when the hour hand points halfway between 10 and 11 , and the minute hand is on the 6 ?
*What if both the hour and the minute hand are on the 1 ?

Today, you're going to be the hands on a clock and race to show the time!

* Give one kid the "Hour Hand" sign, and another kid the "Minute Hand" sign.
* Have an adult or older kid call out a whole-hour time, like " 6 o'clock!" and start the stopwatch
* The two kids lie inside the clock as the "hands," each pointing to the correct number. The minute hand kid should extend his/her arms longer than the hour hand kid.
Stop the stopwatch when the kids display the time correctly.
\star Repeat with different times ending in 0 or 5 and see if the kids can display the times faster.
* Times to avoid for overcrowding: 12:00, 1:05, 2:10, 3:15, 4:20, 5:25, 6:30, 7:35, 8:40, 9:45, 10:50, 11:55.

As Time Goes By (for big kids)

Now that we have the basics figured out, let's see what our clock looks like when time elapses, and the hands move!

Give the kids a starting time (e.g., $4: 15,3: 55$), and then have them advance 15 minutes by figuring out the new time and rolling the hands to it. Both hands may need to move!

* Try it again with different starting times, and advancing by longer times (e.g., 30 minutes, 60 minutes, 90 minutes).

